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INTRODUCTION 

An analytic method Is not available for the computation of stress 

intensity factors for multiple-radial cracks in a thick-walled cylinder.  The 

computation must depend on various numerical methods.^"^ nue to increasingly 

successful applications of the finite element technique in structural 

analysis, the author decided to use higher order finite elements with the aid 

of special crack-tip elements to study multiply cracked cylinders.  Similar to 

the quarter-point element in an 8-node quadrilateral element,6»7 a special 

crack-tip element was developed** for a 12-node quadrilateral, isoparametric 

element.  Both the 8-node and 12-node quadrilaterals have been implemented in 

the popular finite element computer code NASTRAN.**^ The dummy user element 

facility of NASTRAN is used for the implementation.  Another finite element 

computer code APES,10 which was written specifically for the use of 12-node 

quadrilateral, isoparametric elements, has also been used for fracture 

analysis of cracked hollow cylinders.  Quite accurate results of stress 

intensity factors have been obtained using either NASTRAN or APES for 

multiple-radial cracks emanating from the bore of a tube.** These results are 

in good agreement with results reported by Tracy^ using the method of 

modified mapping collocation. 

To increase the maximum internal pressure a cylinder can contain 

elastically and retard the growth of radial cracks near the bore, it is a 

common practice to introduce corapressive residual stress near the bore by an 

autofrettage process.  However, the residual stress in the cylinder causes 

References are listed at the end of this report. 



increased difficulties In the estimation of stress Intensity factors.  One of 

the difficulties Is that results of residual stress distribution vary based on 

different assumptions by different investigators.  Another difficulty is the 

lack of an initial stress analysis capability In NASTRAN and APRS.  A method 

is developed In Reference 13 so that NASTRAN or APES can be used for the 

computation of stress Intensity factors for cracked cylinders with residual 

stress distribution given in the closed form expressions.^ The finite 

element results^ are in close agreement with Parker's results^ using 

modified mapping collocation. 

While the autofrettage process produces favorable compresslve residual 

stress near the bore, It also yields a tensile residual stress near the outer 

cylindrical surface.  The sum of this stress and the tensile stress due to a 

bore pressure may be high enough to cause crack initiation and propagation 

from the outer surface of the cylinder.  This requires the computation of 

stress intensity factors for externally cracked cylinders.  Several 

Investigators have reported their results on this subject.12»1^"19 

In order to reduce repeated finite element computations, the weight 

function method20 is used together with the finite element method.  In this 

report the functional stress Intensity factor approach Is summarized for both 

Internally cracked and externally cracked, partially autofrettaged, 

pressurized thlck-walled cylinders. 



RESIDUAL STRESSES AND THERMAL SIMULATION 

The residual stress distribution in an autofrettaged thick-walled 

cylinder has been studied by a large number of Investigators. There is 

considerable disagreement in their results due to different assumptions which 

must be made in order to make the problem mathematically tractable.  Detailed 

discussions of the results and the associated assumptions are given in 

References 14 and 21.  Under the combination of assumptions that the material 

is incompressible, elastic-perfectly plastic, and obeys the von Mises' yield 

criterion, and that the cylinder is under the condition of plane strain, the 

following closed form solution for residual stresses is obtained for an 

ela8tically unloaded cylinder after partial autofrettage: 

/   0„      ,.      „2 Jof r      p'     11, 
.{21og .   H-?-FiCj,-?>J 1 < r < p 

or(r) - < 
°o  ,    1 
- <P>-Pl)(-5 - 3) 

1 
p < r < b 

(1) 

(2) 

oe(r) - < 

V 

üor r p* 
—{2 log - + 1 + -- 
/3      P      b2 

1   1 

ao  9 1 1 

1 < r < p 

p <    T  < b 

(3) 

(A) 

where bore radius is taken as unit length, b Is the outer radius of the hollow 

cylinder, p is the radius of the elastic-plastic interface during pressuriza- 

tion, o0 is the uniaxial yield stress in tension and compression, and 

b2       P2 

Pl - PI(P) - -jy  (1 - -j + 2 log p) (5) 



This residual stress distribution is used in this report as a basis to 

develop a method to compute stress intensity factors for cracks in such a 

stress field.  It has been shown in Reference 13 that the thermal stresses in 

the cylinder subjected to a thermal load 

/      (T0-Tp) 
T0 log r    1 < r < p 

log p 

T(r) - <^ (6) 

Tp p < r < b 

are equivalent to the residual stresses in Eqs. (1) through (4) if the 

temperature gradient and the yield stress satisfy 

Ecx(T0-Tp)    2o0 
 .   (7) 
2(l-v)log p  /3 

where T0 and Tp are the temperatures at the bore, and r * p respectively, E is 

Young's modulus, and a is the coefficient of linear thermal expansion.  This 

thermal simulation provides an effective method to compute stress intensity 

factors due to initial stresses given by Eqs. (1) through (4) using NASTRAN 

or APES.  The initial stress is replaced by a temperature input of Eq. (6) at 

all nodes.  The stress intensity factors obtained from NASTRAN or APES 

corresponding to the thermal loads are equivalent to stress intensity factors 

due to autofrettage residual stresses.22 

WEIGHT FUNCTION AND FUNCTIONAL STRESS INTENSITY 

A weight function is a universal function which depends only on geometry 

and not on loadings. 2(^  If the mode I stress intensity factor K^) and 

displacement field u'*' associated with the symmetric load system 1 are known, 

the weight function for the cracked geometry is 



H  _3ji(1)(c) 

where H - E for plane stress and H ■ E/(l-v2) for plane strain; c Is the crack 

depth.  Once h Is determined, the mode I stress intensity factor Induced by 

any other symmetric load system T and f is given by 

K - / (x«h)dr + /  (f.h)dA (8a) 
r - "     A - " 

where T is the stress vector acting on boundary r around the crack tip and f 

is the body force in region A defined by T.  This equation can be reduced to 

K - —- /  Pc<*> -T— 
dx <9> 

KCO  O       3C 

for radially cracked rings with x being a distance measured along the crack 

from the base toward the tip.  The relation between r and x is 

1 + x  ,  for interior cracks 
r(x) - (10) 

b - x  ,  for exterior cracks 

The crack pressure pc(x) can be found from the hoop stress (at the site of 

radial cracks) in an uncracked ring subjected to the loading of interest. 

Even though the numerical values of K^) and v'D, the normal component of 

displacement, are known, the partial derivative 3v(l)/3c is usually unknown. 

A technique of computing 3v/3c was devised in Reference 3 by assuming the 

crack face displacement v be a conic section given by Orange.23 Another 

method developed in Reference 15 made no assumptions on v or 3v/3c, but 

utilized the finite element method to compute several stress intensity factors 

each associated with a simple loading system.  For a new load, the new K is 

expressed in terras of known values of K. 



The hoop stress In an uncracked cylinder subjected to an internal 

pressure pi is 

oe(r)    1       b2 

 = -r~ (1 + -r) (11) 
Pi    b2-i     r2 

Substituting OQ  from Eq.   (11)  as  pc  in  Eq.   (9)  we  have 

K(P1)        l m       b2 
  -r— V« * -r— Kc(r-2) (12) 

Pi b2-l b2-l 
where 

H c   Dv(D 
MO   - ~  /    --—dx (13) 

K(D     O     3C 

He ,   3v(D 
^(r"2)  - -— /     [r(x)]-2 dx (14) 

K(1)     o 3c 

are  called   functional  stress   intensity  factors. 

Similarly we  get 

«Po> b2 m b2 

  -r— Kc(l) + -r— Kc(r"2) (15) 
Po b2-l   ^ b2-l 

K(p-b) 1 
  =, ._  {[2  - P1(b)]Kc(i)   - Pi(b)Kc(r-2)  + 2Kc(log  r)}       (16) 

°o /3 

for  the  same  cylinder  subjected   to  uniform  tension   p0 on  outer  cylindrical 

surface and  fully autofrettaged  residual  stress  respectively.     In Eq.   (16)   the 

new  functional   stress   intensity   factor  is 

H        rc 3v(D 
KcUog  r)   - ----  /    log(r(x)) dx (17) 

K(1)     o 3x 



The finite element results of K(pi)/pi, K(p0)/p0 and K(p*b)/o0 enable us 

to compute the functional stress Intensity factors KcO), K^r-2), and K^log 

r).  For the same flawed cylinder with a different degree of autofrettage, the 

8tressses can be computed from one of the following algebraic equations.  For 

an inner crack with the crack tip rc in the range 1 < rc < p, the equation is 

K(p)    1 , 
 3 — {[2 - P1(p)]Kc(l) - P^pJMr"

2) + 2Kc(log r)}   (18) 

For an outer crack with rc in the range p < rc < b, the equation is 

K(p)   1  9 , 9 
 = - [p2-Pi(p)J[b-2Kc(l) + Mr"2)] (19) 
öo   /3 

MODIFICATION FORMULAS 

For a partially autofrettaged cylinder, let e  be the degree of auto- 

frettage, then e  - (p-l)/t where t - b -1 is the wall thickness of the 

cylinder.  When a crack crosses the elastic-plastic interface r ■ p, the hoop 

stress along the crack face must be represented by both Eqs. (3) and (4). 

Hence Eqs. (18) and (19) are not valid in such a situation.  For inner cracks, 

we may use Eq. (18) to compute an approximate value which is based on the 

crack face loading of Eq. (3).  The error introduced by Eq. (18) may be 

corrected by adding the following crack face loading 

0, 1 < r < p 

Pc(r) " 
°o 0    1   1 °o       r p2 11 
— (p2-Pl)(-r + -T)   (2 log - + 1 + -T - PI(-T + -r)), p < r < rc 
/3 b2  r2 /7      p b2 b2  r2 

(20) 



where rc Is the radius of the crack tip.  Substituting from the above into Eq. 

(9), we should be able to obtain a correction stress intensity factor K^ If 

3v/3c is known.  Assume the crack tip crosses the elastic-plastic interface 

only slightly, the Westergaard near field solution for v in terras of crack-tip 

stress intensity factor K(*) can be approximately used to find 3v/3c.  Let 5 

be a length measured from the crack tip and be defined by 

C - -(x-c) (21) 

then 
2K(D  2 ,,„ „ 

v«) (-)1'2 a (22) 
H       TT 

and 

3v  K(D  2 1/0   i ' 1 „ 
— = (.)l/2 (~ + - /I) (23) 
3c   H   IT     /I      c 

The approximate correction factor K$ obtained by terrawise integration of Eq. 

(9) using Eqs. (20) and (23) is given by 

^    1 
.- , — fj]7  {-i + 2 log p)(l! + ii») + p2(I2 + 12') " 2(I3 + I3')}  (24) 
°o   n 

Using fit - |rc-p|, the abbreviations in Eq. (24) are: 

2 
II - 2/6t  ,  Ii' - — (St)3/2 (25) 

3c 

1  /*t  (Rc)"172 
l2  „ [ log D(p)j 

1+c  p       2 

1  ^t      (Rc)'1/2 
[2. , -  [ + log D(p)J 

c   p       2 

(26) 



/i+c - /at 
I3 -  -2[(2-log  p)/6t + (l+c)1/2  log J 

/l+c + /6t 
(27) 

2 
I3»   - —  [/6t  {6t  log  p -  2(l+c)   -  26t/3}  - (l+c)3/2 log D(p)] 

3c 
with 

D(p) - [2(l+c) - p - 2/6t(l+c)]/p (28) 

The sum of K$/o0 from Eq. (24) and K(p)/o0 from Eq, (18) usually gives a 

better approximation of crack-tip stress intensity factors when 6 = |rc-p|/t 

is small.  Since the correction formula K$/o0 is not a function of N, the 

number of cracks, it works for small N and 6.  But when N is large, the crack 

interaction is strong, and 6 must be small. 

A similar formula can be found for exterior cracks crossing the elastic- 

plastic interface from elastic into plastic region. 

*6   2 
— = (~)l/2{(l-2 log p)(J1+J1») - p

2^^') + 2(J3+J3')}   (29) 
o    3TT 

where 
2 

Jl - 2/6t  ,  Ji' - — (6t)3/2 (30) 
3c 

1    JTt __— 
j2 m  — [ + re"1/2 tan-Vöt/rd (31) 

rc       p 

1 /6t 
j2»   , -  [ + tc"1/2 tan-Vöt/rc] (32) 

c p 

J3 -  2[(-2+log  p)/6t + 2/r7 tan-V5t/rc] (33) 

2 2   
J3'   - —  [(6t)3/2iog  p + - (3rc-6t)/St  - 2rc

3/2  tan-V6t/rc]     (34) 
3c 3 



Adding K<5/o0 of Eq. (29) to K(p)/o0 of Eq. (19), the result is the corrected 

crack-tip stress intensity factors for exterior cracks. 

NUMERICAL RESULTS AND CONCLUSIONS 

Extensive numerical results are obtained for a cylinder of b * 2, which 

is a commonly used value in cannon design,  A typical finite element idealiza- 

tion is shown in Figure 1 for inner radial cracks.  Slight modifications in 

element meshes are needed for exterior cracks.  In Figure 1 the elements 

surrounding the crack tip are enriched elements.^  If collapsed singular 

elements are to be used, we can simply replace the enriched quadrilaterals by 

collapsed quadrilateral elements (triangular elements) with proper shifting of 

side nodes to new locations.  Similar accuracy is achieved using either 

enriched or collapsed quadrilaterals.  Stress intensity factors for internal 

cracks are given in Table 1 of Reference 15 for three different types of load- 

ings.  Using these results and using Eqs. (12), (15), and (16), we obtain 

functional stress intensity factors for internal cracks.  Figure 2 shows 

stress intensity factors as a function of c/t for various numbers of internal 

cracks in a fully autofrettaged cylinder.  Figures 3, 4, and 5 are similar 

graphs of functional stress intensity factors.  Corresponding graphs for 

external cracks are shown in Figures 6 through 9. 

Readings taken from Figures 3, 4, and 5 are enough for an estimate of 

stress intensity factor for internally cracked cylinders with any assigned 

values of N and c/t for any combination of p^ and residual stresses 

corresponding to a given e.  If crack tips cross the elastic-plastic 

10 



interface, then correction formula (24) should be used.  As an example, if the 

stress intensity factor is desired for N - 2, c/t ■ 0.3 in a 25 percent 

autofrettaged cylinder, we first take readings:  ^(D/Zirc ■ 1.41 from Figure 

3, Kc(r~2)//Tic~ - 1.05 from Figure 4, and Kcdog r)//TTC~ « 0.22 from Figure 5; 

then Kc(e-0.25)/oo/TTc - -0.12 is computed from Eq. (18).  Since rc = 1.3 is 

greater than p ■ 1.25, the correction stress intensity factor K^/o0/^c  = 

-0.023 is obtained from Eq. (24).  The sum of Eqs. (18) and (24) gives K/a0/ffc 

■ -0.143.  To check this result, a finite element computation of this case is 

performed.  The result is also -0.143.  For externally cracked cylinders, Eq. 

(19) involves only two functional stress intensity factors.  Therefore, only 

Figures 7 and 8 are needed.  For example, given N » 4, readings taken from 

Figure 7 are Kc(l)//*c - 1.12 and 1.18 for c/t - 0.2 and 0.3 respectively. 

Readings are K^r"2)//^ - 0.32 for c/t - 0.2 and 0.36 for c/t - 0.3 from 

Figure 8.  Stress intensity factors for e - 0.8 can be computed from Eq. (19), 

giving K(e-0.8)/oo/TFc - 0.492 and 0.537 for c/t - 0.2 and 0.3 respectively. 

For c/t - 0.3, the correction formula (29) must be used.  The result is 

K$/o0/iTc~ - -0.05.  The final result for c/t - 0.3 is K(e-0.8)/oo - 0.487 which 

is close to the result of 0.486 obtained directly from a finite element 

computation. 

For a combination of residual stresses and internal pressure, the stress 

intensity factor is simply an algebraic sum.  Stress intensity factors 

normalized by OQ/TTC are shown in Figure 10 as a function of N for internal 

cracks subjected to several selected values of p±  and e.  Figure 11 is a 

similar graph for external cracks. 

II 



The functional stress Intensity factors are used to obviate the 

difficulty in finding the weight function itself.  The approach is the result 

of a series of methods developed for multiply cracked cylinders.  The 

extension of the method to residual stress distribution other than that given 

by Eqs, (1) through (4) is highly possible. 

From numerical results, the stress intensity factor is largest for N ■ 2 

for various combinations of residual stresses and internal pressures for both 

interior and exterior cracks.  The stress intensity factor monotonically 

decreases as the number of cracks increases from N ■ 2. 

12 
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CRACK TIP 

Figure 1(a).  A typical finite element idealization. 

(b) 

CRACK   TIP 

Figure 1(b).  Idealization for very shallow cracks. 
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Figure 3.  Kc/p/rrc as a function of c/t for N internal radial cracks 
with constant crack face loading. 
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Figure 5.  Kc/p/nc vs. c/t for N internal radial cracks with 
crack face loading p (x) » p log(l+x). 
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Figure 6.     K/70vrrc  as  a  function of c/t  for N  radial  cracks at outer 
surface of a  fully autofrettaged cylinder of b/a = 
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Figure  7. Kcfp)/pAc as  a   function of c/t   for \T external   radial   cracks 
with  constant  crack  face  loading. 
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Figure 8. Kc/pv/rrc* vs.   c/t  for N external   radial   cracks with  crack   face 
loading p^ (x)   = p(b-x)--. 
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Figure 9.     Kc/p/7rc~ vs.   c/t  for N external  radial  cracks with  crack  face 
loading pc(x)   =p  log(b-x). 
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Figure 10. K/O0/TKT for N radial cracks at inner surface of a cylinder of b/a = .2 
subjected to combined internal pressure pi = o0/f and residual stresses 
corresponding to given degrees of autofrettage, 
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Figure 11.  K/OQ/TTC for N radial cracks at outer surface of a cylinder of 
b/a * 2 subjected to combined internal pressure pi ■ o0/f, 
where f = 1.5 except otherwise indicated, and residual 
stresses corresponding to given degrees of autofrettage e. 
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